Buccal neurons activate ciliary beating in the foregut of the pteropod mollusk Clione limacina.

نویسندگان

  • Aleksey Y Malyshev
  • Pavel M Balaban
چکیده

Beating of cilia lining the foregut of gastropods facilitates the swallowing of food and, therefore, plays a role in feeding behavior. Despite the fact that neural control of feeding is well studied in mollusks, no neurons controlling ciliary beating in the foregut have been identified to date. Here we describe for the first time a pair of buccal neurons innervating the foregut of Clione. Intracellular stimulation of these neurons induced vigorous activation of cilia lining the foregut in a semi-intact preparation. Using immunochemistry labeling, buccal foregut cells were found to contain peptides similar to CNP neuropeptides of the terrestrial snail Helix lucorum. Application of DYPRL-amide, a member of the Helix CNP peptide family, mimicked the effect of buccal foregut cell stimulation on ciliary activity. Induction of fictive feeding in an isolated CNS preparation resulted in the activation of buccal foregut cells suggesting that these cells control ciliary beating in the foregut during feeding. Thus, cilia-activating buccal neurons may represent a new intrinsic element of the neural control of feeding in gastropods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholinergic activation of startle motoneurons by a pair of cerebral interneurons in the pteropod mollusk Clione limacina.

The holoplanktonic pteropod mollusk Clione limacina exhibits an active escape behavior that is characterized by fast swimming away from the source of potentially harmful stimuli. The initial phase of escape behavior is a startle response that is controlled by pedal motoneurons whose activity is independent of the normal swim pattern generator. In this study, a pair of cerebral interneurons is d...

متن کامل

Phase-locked coordination between two rhythmically active feeding structures in the mollusk Clione limacina. I. Motor neurons.

Coordination between different motor centers is essential for the orderly production of all complex behaviors, in both vertebrates and invertebrates. The current study revealed that rhythmic activities of two feeding structures of the pteropod mollusk Clione limacina, radula and hooks, which are used to extract the prey from its shell, are highly coordinated in a phase-dependent manner. Hook pr...

متن کامل

Changes in wingstroke kinematics associated with a change in swimming speed in a pteropod mollusk, Clione limacina.

In pteropod mollusks, the gastropod foot has evolved into two broad, wing-like structures that are rhythmically waved through the water for propulsion. The flexibility of the wings lends a tremendous range of motion, an advantage that could be exploited when changing locomotory speed. Here, we investigated the kinematic changes that take place during an increase in swimming speed in the pteropo...

متن کامل

Cellular Mechanisms Underlying Swim Acceleration in the Pteropod Mollusk Clione limacina.

The pteropod mollusk Clione limacina swims by dorsal-ventral flapping movements of its wing-like parapodia. Two basic swim speeds are observed-slow and fast. Serotonin enhances swimming speed by increasing the frequency of wing movements. It does this by modulating intrinsic properties of swim interneurons comprising the swim central pattern generator (CPG). Here we examine some of the ionic cu...

متن کامل

Coordination of startle and swimming neural systems in the pteropod mollusk Clione limacina: role of the cerebral cholinergic interneuron.

The holoplanktonic pteropod mollusk Clione limacina has a unique startle system that provides a very fast, ballistic movement of the animal during escape or prey capture behaviors. The startle system consists of two groups of large pedal motoneurons that control ventral or dorsal flexions of the wings. Although startle motoneurons innervate the same musculature used during normal swimming, they...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 212 18  شماره 

صفحات  -

تاریخ انتشار 2009